

HYDRAULIC TURBOMACHINES

Exercises 2 Velocity Triangles

Parametric Study for a Velocity Triangle of a Francis Turbine

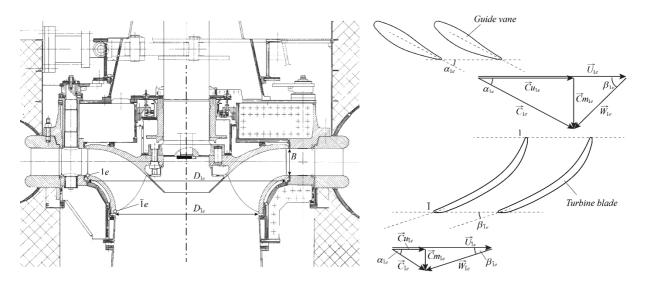


Figure 1. Scheme of the hydropower plant with its characteristics.

The meridional view of a Francis turbine and one example of the velocity triangle are sketched in Figure 1. For a Francis turbine, the angle of the absolute flow velocity at the inlet α_{1e} corresponds to the guide vane opening degree, and the angle of the relative flow velocity at the outlet corresponds to the outlet blade angle $\beta_{\overline{1}e}$, as shown in Figure 1. Referring to the figure, answer the following questions.

- 1) Give the expression of turbine rotational velocity U_{1e} and $U_{\overline{1}e}$ as a function of the angular rotation ω and the inlet and outlet diameters, D_{1e} and $D_{\overline{1}e}$ respectively.
- 2) Give the relation of the turbine discharge Q and the discharge Q_t traversing the runner as a function of the volumetric efficiency η_v .
- 3) Give the meridional components of the flow velocity Cm_{1e} and $Cm_{\overline{1}e}$ as a function of the discharge Q and the volumetric efficiency η_v by using the variable defined in Figure 1.
- 4) Considering the vectorial relationship at the turbine runner inlet 1, write the relation of π , Cu_{1e} , Q, η_{v} , D_{1e} , B and α_{1e} .
- 5) Considering the vectorial relationship at the turbine runner outlet $\overline{1}$, derive the relation of π , $Cu_{\overline{1}e}$, $U_{\overline{1}e}$, Q, η_v , $D_{\overline{1}e}$ and $\beta_{\overline{1}e}$.

- 6) Derive the relation of the transformed specific energy E_t as a function of U_{1e} , $U_{\overline{1}e}$, Q, η_v , D_{1e} , $D_{\overline{1}e}$, B, α_{1e} and $\beta_{\overline{1}e}$.
- 7) Considering the ratio of $\frac{U_{1e}}{U_{\overline{1}e}}$, derive the relation for transformed specific energy E_t as a function of $U_{\overline{1}e}$, Q, η_v , $D_{\overline{1}e}$, B, α_{1e} and $\beta_{\overline{1}e}$.
- 8) For a given rotational frequency of the runner, sketch the transformed specific energy E_t as a function of the traversing discharge Q_t , and derive the condition of minimum discharge Q_t^{min} to achieve positive specific energy.
- 9) When the turbine is operated at the best efficiency point (BEP), express the transformed power P_t by necessary variables, considering the assumption of the best efficiency point $(Cu_{\bar{1}_e} = 0)$.

Calculation of the best efficiency using a hill-chart

The $Q_{ED}-n_{ED}$ hill-chart of a Francis turbine with the iso-value curves of both the global efficiency η (red curves) and guide vane opening α (blue curves) is represented in Figure 3. The horizontal and vertical axes represent IEC discharge factor Q_{ED} and IEC speed factor n_{ED} , respectively. Using the hill-chart, answer the following questions. Use the following values if required.

 $D_{1e} = 4.20$ m, $D_{Te} = 3.50$ m, B = 0.60 m, n = 3.88 Hz, $\eta_v = 0.98$ and $\eta_{me} = 0.97$ where η_v and η_{me} are the volumetric and mechanical efficiency, respectively.

11.10.2023 EPFL Page 2/3

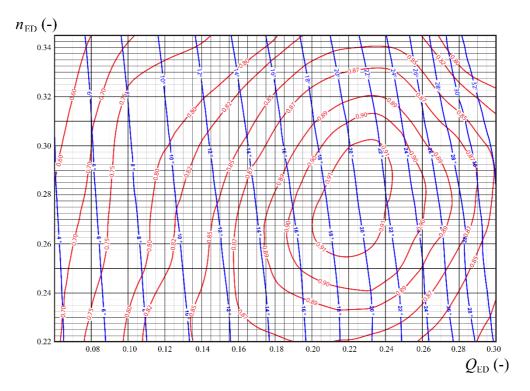


Figure 2. $Q_{\rm ED}$ – $n_{\rm ED}$ hill-chart of a Francis turbine

- 10) Point out the best efficiency point in the hill-chart, and estimate the global efficiency $\eta_{BEP}^{hill-chart}$ and guide vane opening $\alpha_{BEP}^{hill-chart}$ at the best efficiency point (BEP).
- 11) At the BEP, the available head H and the discharge in the power plant Q are measured as H = 235 m and Q = 130 m³ s⁻¹. Calculate the transformed energy E_t at the best efficiency point. Then, calculate the available power at the BEP, i.e. P^{BEP} .

11.10.2023 EPFL Page 3/3